Skip to main content
Log in

Sperm histone modifications may predict success in human assisted reproduction: a pilot study

  • Gamete Biology
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

Currently, assisted reproduction clinics employ various sperm selection techniques to identify the best sperm for fertilization. However, these techniques may not assess crucial sperm traits that can substantially impact embryonic quality. To address this, we propose analyzing diverse histone modifications as potential markers of sperm functionality and success in assisted reproduction techniques.

Methods

Cross-sectional pilot study including infertile male patients attending an infertility clinic in CABA, Argentina between April and August 2019 was performed. We used immunofluorescence techniques to evaluate post-translational modifications of histones in sperm and established correlations with in vitro fertilization outcome and embryo quality.

Results

Our findings indicate a negative correlation between H3K4me3 and H3K4me2 marks and fertilization rate and showed a positive correlation of this parameter with H3K9me mark. In addition, there was a positive correlation between H3K27me3 and good embryo quality.

Conclusions

This pilot study proposes a non-invasive strategy to predict embryo quality by analyzing spermatozoa prior to fertilization. The assessment of histone post-translational modifications in sperm samples could provide useful information for the recognition of epigenetic marks that could predict the health of the embryo of an assisted fertilization treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Data Availability

The datasets generated and/or analyzed during the course of this study are not publicly accessible. However, the corresponding author can provide them upon reasonable request, while maintaining data confidentiality.

References

  1. Vlaisavljević V. Neplodnost. In: Borko E, Takač I, editors. Ginekologija. 2nd ed. Maribor: Visoka zdravstvena šola; 2006. p. 307–36 (in Slovene).

    Google Scholar 

  2. Choy JT, Eisenberg ML. Male infertility as a window to health. Fertil Steril. 2018;110(5):810–4. https://doi.org/10.1016/j.fertnstert.2018.08.015.

    Article  PubMed  Google Scholar 

  3. World Health Organization. ICD-11: International classification of diseases (11th revision). 2018. https://icd.who.int/

  4. Vander Borght M, Wyns C. Fertility and infertility: definition and epidemiology. Clin Biochem. 2018;62:2–10. https://doi.org/10.1016/j.clinbiochem.2018.03.012.

    Article  PubMed  Google Scholar 

  5. Agarwal A, Baskaran S, Parekh N, et al. Male infertility. Lancet. 2021;397(10271):319–33. https://doi.org/10.1016/S0140-6736(20)32667-2.

    Article  PubMed  Google Scholar 

  6. Craig JR, Jenkins TG, Carrell DT, Hotaling JM. Obesity, male infertility, and the sperm epigenome. Fertil Steril. 2017;107(4):848–59. https://doi.org/10.1016/j.fertnstert.2017.02.115.

    Article  PubMed  Google Scholar 

  7. Cambiasso MY, Gotfryd L, Stinson MG, et al. Paternal alcohol consumption has intergenerational consequences in male offspring. J Assist Reprod Genet. 2022;39(2):441–59. https://doi.org/10.1007/s10815-021-02373-0.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Colaco S, Sakkas D. Paternal factors contributing to embryo quality. J Assist Reprod Genet. 2018;35(11):1953–68. https://doi.org/10.1007/s10815-018-1304-4.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Nanassy L, Carrell DT. Paternal effects on early embryogenesis. J Exp Clin Assist Reprod. 2008;5:2. https://doi.org/10.1186/1743-1050-5-2.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Schon SB, Luense LJ, Wang X, et al. Histone modification signatures in human sperm distinguish clinical abnormalities. J Assist Reprod Genet. 2019;36(2):267–75. https://doi.org/10.1007/s10815-018-1354-7.

    Article  PubMed  Google Scholar 

  11. Teperek M, Simeone A, Gaggioli V, et al. Sperm is epigenetically programmed to regulate gene transcription in embryos. Genome Res. 2016;26(8):1034–46. https://doi.org/10.1101/gr.201541.115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hammoud SS, Purwar J, Pflueger C, Cairns BR, Carrell DT. Alterations in sperm DNA methylation patterns at imprinted loci in two classes of infertility. Fertil Steril. 2010;94(5):1728–33. https://doi.org/10.1016/j.fertnstert.2009.09.010.

    Article  CAS  PubMed  Google Scholar 

  13. Niakan KK, Han J, Pedersen RA, Simon C, Pera RA. Human pre-implantation embryo development. Development. 2012;139(5):829–41. https://doi.org/10.1242/dev.060426.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wong CC, Loewke KE, Bossert NL, et al. Non-invasive imaging of human embryos before embryonic genome activation predicts development to the blastocyst stage. Nat Biotechnol. 2010;28(10):1115–21. https://doi.org/10.1038/nbt.1686.

    Article  CAS  PubMed  Google Scholar 

  15. Gardner DK, Lane M. Culture and selection of viable blastocysts: a feasible proposition for human IVF? Hum Reprod Update. 1997;3(4):367–82. https://doi.org/10.1093/humupd/3.4.367.

    Article  CAS  PubMed  Google Scholar 

  16. French DB, Sabanegh ES Jr, Goldfarb J, Desai N. Does severe teratozoospermia affect blastocyst formation, live birth rate, and other clinical outcome parameters in ICSI cycles? Fertil Steril. 2010;93(4):1097–103. https://doi.org/10.1016/j.fertnstert.2008.10.051.

    Article  PubMed  Google Scholar 

  17. World Health Organization. WHO laboratory manual for the examination and processing of human semen. 5th ed. Geneva: WHO Press; 2010.

    Google Scholar 

  18. Romanato M, Cameo MS, Bertolesi G, Baldini C, Calvo JC, Calvo L. Heparan sulphate: a putative decondensing agent for human spermatozoa in vivo. Hum Reprod. 2003;18(9):1868–73. https://doi.org/10.1093/humrep/deg354.

    Article  CAS  PubMed  Google Scholar 

  19. Romanato M, Regueira E, Cameo MS, Baldini C, Calvo L, Calvo JC. Further evidence on the role of heparan sulfate as protamine acceptor during the decondensation of human spermatozoa. Hum Reprod. 2005;20(10):2784–9. https://doi.org/10.1093/humrep/dei124.

    Article  CAS  PubMed  Google Scholar 

  20. Reyes R, Rosado A, Hernández O, Delgado NM. Heparin and glutathione: physiological decondensing agents of human sperm nuclei. Gamete Res. 1989;23(1):39–47. https://doi.org/10.1002/mrd.1120230105.

    Article  CAS  PubMed  Google Scholar 

  21. Aoki VW, Moskovtsev SI, Willis J, Liu L, Mullen JB, Carrell DT. DNA integrity is compromised in protamine-deficient human sperm. J Androl. 2005;26(6):741–8. https://doi.org/10.2164/jandrol.05063.

    Article  CAS  PubMed  Google Scholar 

  22. Panyim S, Chalkley R. High resolution acrylamide gel electrophoresis of histones. Arch Biochem Biophys. 1969;130(1):337–46. https://doi.org/10.1016/0003-9861(69)90042-3.

    Article  CAS  PubMed  Google Scholar 

  23. Palermo G, Joris H, Devroey P, Van Steirteghem AC. Pregnancies after intracytoplasmic injection of single spermatozoon into an oocyte. Lancet. 1992;340(8810):17–8. https://doi.org/10.1016/0140-6736(92)92425-f.

    Article  CAS  PubMed  Google Scholar 

  24. Alpha Scientists in Reproductive Medicine and ESHRE Special Interest Group of Embryology. The Istanbul consensus workshop on embryo assessment: proceedings of an expert meeting. Hum Reprod. 2011;26(6):1270–1283. https://doi.org/10.1093/humrep/der037.

  25. Galotto C, Cambiasso MY, Julianelli VL, et al. Human sperm decondensation in vitro is related to cleavage rate and embryo quality in IVF. J Assist Reprod Genet. 2019;36(11):2345–55. https://doi.org/10.1007/s10815-019-01590-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Malizia BA, Hacker MR, Penzias AS. Cumulative live-birth rates after in vitro fertilization. N Engl J Med. 2009;360(3):236–43. https://doi.org/10.1056/NEJMoa0803072.

    Article  CAS  PubMed  Google Scholar 

  27. Hansen M, Bower C, Milne E, de Klerk N, Kurinczuk JJ. Assisted reproductive technologies and the risk of birth defects–a systematic review. Hum Reprod. 2005;20(2):328–38. https://doi.org/10.1093/humrep/deh593.

    Article  PubMed  Google Scholar 

  28. Arpanahi A, Brinkworth M, Iles D, et al. Endonuclease-sensitive regions of human spermatozoal chromatin are highly enriched in promoter and CTCF binding sequences. Genome Res. 2009;19(8):1338–49. https://doi.org/10.1101/gr.094953.109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hammoud SS, Nix DA, Zhang H, Purwar J, Carrell DT, Cairns BR. Distinctive chromatin in human sperm packages genes for embryo development. Nature. 2009;460(7254):473–8. https://doi.org/10.1038/nature08162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Brykczynska U, Hisano M, Erkek S, et al. Repressive and active histone methylation mark distinct promoters in human and mouse spermatozoa. Nat Struct Mol Biol. 2010;17(6):679–87. https://doi.org/10.1038/nsmb.1821.

    Article  CAS  PubMed  Google Scholar 

  31. Carone BR, Hung JH, Hainer SJ, et al. High-resolution mapping of chromatin packaging in mouse embryonic stem cells and sperm. Dev Cell. 2014;30(1):11–22. https://doi.org/10.1016/j.devcel.2014.05.024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hammoud SS, Nix DA, Hammoud AO, Gibson M, Cairns BR, Carrell DT. Genome-wide analysis identifies changes in histone retention and epigenetic modifications at developmental and imprinted gene loci in the sperm of infertile men. Hum Reprod. 2011;26(9):2558–69. https://doi.org/10.1093/humrep/der192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Schagdarsurengin U, Paradowska A, Steger K. Analysing the sperm epigenome: roles in early embryogenesis and assisted reproduction. Nat Rev Urol. 2012;9(11):609–19. https://doi.org/10.1038/nrurol.2012.183.

    Article  CAS  PubMed  Google Scholar 

  34. Erkek S, Hisano M, Liang CY, et al. Molecular determinants of nucleosome retention at CpG-rich sequences in mouse spermatozoa [published correction appears in Nat Struct Mol Biol. 2013 Oct;20(10):1236]. Nat Struct Mol Biol. 2013;20(7):868–75. https://doi.org/10.1038/nsmb.2599.

    Article  CAS  PubMed  Google Scholar 

  35. Ihara M, Meyer-Ficca ML, Leu NA, et al. Paternal poly (ADP-ribose) metabolism modulates retention of inheritable sperm histones and early embryonic gene expression. PLoS Genet. 2014;10(5):e1004317. https://doi.org/10.1371/journal.pgen.1004317. (Published 2014 May 8).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Shi L, Wu J. Epigenetic regulation in mammalian preimplantation embryo development. Reprod Biol Endocrinol. 2009;7:59. https://doi.org/10.1186/1477-7827-7-59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Carrell DT, Hammoud SS. The human sperm epigenome and its potential role in embryonic development. Mol Hum Reprod. 2010;16(1):37–47. https://doi.org/10.1093/molehr/gap090.

    Article  CAS  PubMed  Google Scholar 

  38. Boissonnas CC, Jouannet P, Jammes H. Epigenetic disorders and male subfertility. Fertil Steril. 2013;99(3):624–31. https://doi.org/10.1016/j.fertnstert.2013.01.124.

    Article  CAS  PubMed  Google Scholar 

  39. Jung YH, Sauria MEG, Lyu X, et al. Chromatin states in mouse sperm correlate with embryonic and adult regulatory landscapes. Cell Rep. 2017;18(6):1366–82. https://doi.org/10.1016/j.celrep.2017.01.034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Shihara T, Griffith OW, Suzuki S, Renfree MB. Presence of H3K4me3 on paternally expressed genes of the paternal genome from sperm to implantation. Front Cell Dev Biol. 2022;10:838684. https://doi.org/10.3389/fcell.2022.838684.

    Article  Google Scholar 

  41. La Spina FA, Romanato M, Brugo-Olmedo S, et al. Heterogeneous distribution of histone methylation in mature human sperm. J Assist Reprod Genet. 2014;31(1):45–9. https://doi.org/10.1007/s10815-013-0137-4.

    Article  PubMed  Google Scholar 

  42. Balhorn R, Reed S, Tanphaichitr N. Aberrant protamine 1/protamine 2 ratios in sperm of infertile human males. Experientia. 1988;44(1):52–5. https://doi.org/10.1007/BF01960243.

    Article  CAS  PubMed  Google Scholar 

  43. de Yebra L, Ballescà JL, Vanrell JA, Bassas L, Oliva R. Complete selective absence of protamine P2 in humans. J Biol Chem. 1993;268(14):10553–7.

    Article  PubMed  Google Scholar 

  44. Carrell DT, Liu L. Altered protamine 2 expression is uncommon in donors of known fertility, but common among men with poor fertilizing capacity, and may reflect other abnormalities of spermiogenesis. J Androl. 2001;22(4):604–10.

    Article  CAS  PubMed  Google Scholar 

  45. Mengual L, Ballescá JL, Ascaso C, Oliva R. Marked differences in protamine content and P1/P2 ratios in sperm cells from percoll fractions between patients and controls. J Androl. 2003;24(3):438–47. https://doi.org/10.1002/j.1939-4640.2003.tb02692.x.

    Article  PubMed  Google Scholar 

  46. Kren R, Kikuchi K, Nakai M, et al. Intracytoplasmic sperm injection in the pig: where is the problem? J Reprod Dev. 2003;49(4):271–3. https://doi.org/10.1262/jrd.49.271.

    Article  PubMed  Google Scholar 

  47. Lee JW, Yang X. Factors affecting fertilization of porcine oocytes following intracytoplasmic injection of sperm. Mol Reprod Dev. 2004;68(1):96–102. https://doi.org/10.1002/mrd.20044.

    Article  CAS  PubMed  Google Scholar 

  48. Lee JW, Tian XC, Yang X. Failure of male pronucleus formation is the major cause of lack of fertilization and embryo development in pig oocytes subjected to intracytoplasmic sperm injection. Biol Reprod. 2003;68(4):1341–7. https://doi.org/10.1095/biolreprod.102.009001.

    Article  CAS  PubMed  Google Scholar 

  49. Gaydos LJ, Wang W, Strome S. Gene repression. H3K27me and PRC2 transmit a memory of repression across generations and during development. Science. 2014;345(6203):1515–8. https://doi.org/10.1126/science.1255023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bernstein BE, Humphrey EL, Erlich RL, et al. Methylation of histone H3 Lys 4 in coding regions of active genes. Proc Natl Acad Sci U S A. 2002;99(13):8695–700. https://doi.org/10.1073/pnas.082249499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Liu X, Wang C, Liu W, et al. Distinct features of H3K4me3 and H3K27me3 chromatin domains in pre-implantation embryos. Nature. 2016;537(7621):558–62. https://doi.org/10.1038/nature19362.

    Article  CAS  PubMed  Google Scholar 

  52. Samson M, Jow MM, Wong CC, et al. The specification and global reprogramming of histone epigenetic marks during gamete formation and early embryo development in C. elegans. PLoS Genet. 2014;10(10):e1004588. https://doi.org/10.1371/journal.pgen.1004588.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lambrot R, Xu C, Saint-Phar S, et al. Low paternal dietary folate alters the mouse sperm epigenome and is associated with negative pregnancy outcomes. Nat Commun. 2013;4:2889. https://doi.org/10.1038/ncomms3889.

    Article  CAS  PubMed  Google Scholar 

  54. Perdrix A, Travers A, Chelli MH, et al. Assessment of acrosome and nuclear abnormalities in human spermatozoa with large vacuoles. Hum Reprod. 2011;26(1):47–58. https://doi.org/10.1093/humrep/deq297.

    Article  CAS  PubMed  Google Scholar 

  55. Boitrelle F, Ferfouri F, Petit JM, et al. Large human sperm vacuoles observed in motile spermatozoa under high magnification: nuclear thumbprints linked to failure of chromatin condensation. Hum Reprod. 2011;26(7):1650–8. https://doi.org/10.1093/humrep/der129.

    Article  CAS  PubMed  Google Scholar 

  56. Utsuno H, Miyamoto T, Oka K, Shiozawa T. Morphological alterations in protamine-deficient spermatozoa. Hum Reprod. 2014;29(11):2374–81. https://doi.org/10.1093/humrep/deu225.

    Article  CAS  PubMed  Google Scholar 

  57. Asmarinah, Syauqy A, Umar LA, et al. Sperm chromatin maturity and integrity correlated to zygote development in ICSI program. Syst Biol Reprod Med. 2016;62(5):309–316. https://doi.org/10.1080/19396368.2016.1210695.

  58. Ribas-Maynou J, Abad C, García-Segura S, et al. Sperm chromatin condensation and single- and double-stranded DNA damage as important parameters to define male factor related recurrent miscarriage. Mol Reprod Dev. 2020;87(11):1126–32. https://doi.org/10.1002/mrd.23424.

    Article  CAS  PubMed  Google Scholar 

  59. Ogle RA, Netherton J, Schneider E, et al. Nuclear heterogeneity is prevalent in high-quality fractionated human sperm cells typically used for assisted conception. Hum Reprod. 2021;36(8):2073–82. https://doi.org/10.1093/humrep/deab134.

    Article  CAS  PubMed  Google Scholar 

  60. Bendayan M, Caceres L, Saïs E, et al. Human sperm morphology as a marker of its nuclear quality and epigenetic pattern. Cells. 2022;11(11):1788. https://doi.org/10.3390/cells11111788. (Published 2022 May 30).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Radford EJ, Ito M, Shi H, et al. In utero effects. In utero undernourishment perturbs the adult sperm methylome and intergenerational metabolism. Science. 2014;345(6198):1255903. https://doi.org/10.1126/science.1255903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ly L, Chan D, Aarabi M, et al. Intergenerational impact of paternal lifetime exposures to both folic acid deficiency and supplementation on reproductive outcomes and imprinted gene methylation. Mol Hum Reprod. 2017;23(7):461–77. https://doi.org/10.1093/molehr/gax029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lismer A, Kimmins S. Emerging evidence that the mammalian sperm epigenome serves as a template for embryo development. Nat Commun. 2023;14(1):2142. https://doi.org/10.1038/s41467-023-37820-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research received funding from a generous donation from Fundación Honorio Bigand, Fundación Williams, Fundación Barón and grants from UBACYT (20020100101034) and ANPCYT (2489).

This study was funded by a grant from Fundación Honorio Bigand in Buenos Aires, Argentina. MYC is a doctoral fellow of CONICET, Argentina.

Author information

Authors and Affiliations

Authors

Contributions

MYC conducted the experiments, analyzed the data, and wrote the paper. MR analyzed the data and edited the paper. LG collaborated with the interpretation of data. GRV oversaw the clinical procedures. LC, JCC and VAF supervised the study and edited the paper. All authors made significant contributions to the drafting and critical revision of the manuscript, and have approved the final version submitted for publication.

Corresponding authors

Correspondence to M. Y. Cambiasso or V. A. Fontana.

Ethics declarations

Ethical approval

The IBYME Ethics Committee approved this study, and the procedures used in this research comply with the principles of the Declaration of Helsinki.

Conflict of interest

The authors declare that there are no conflicts of interest that could be seen as affecting the objectivity of the research presented.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 388 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cambiasso, M.Y., Romanato, M., Gotfryd, L. et al. Sperm histone modifications may predict success in human assisted reproduction: a pilot study. J Assist Reprod Genet 41, 3147–3159 (2024). https://doi.org/10.1007/s10815-024-03280-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-024-03280-w

Keywords

Profiles

  1. M. Y. Cambiasso
  2. V. A. Fontana