Skip to main content

Advertisement

Log in

Incidence of haploidy and triploidy in trophectoderm biopsies of blastocysts derived from normally and abnormally fertilized oocytes

  • Genetics
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

We aimed to identify the correlation between morphological pronuclear (PN) status and the genetically determined ploidy configuration in preimplantation embryos.

Methods

A retrospective observational study was conducted on 1982 embryos displaying normal fertilization and 380 embryos showing an atypical PN pattern, tested for aneuploidies and ploidy status via preimplantation genetic testing (PGT) between May 2019 and May 2024. Ploidy prediction was performed using a validated targeted-NGS approach and a proprietary bioinformatic pipeline analyzing SNPs B-allele frequency information. Ploidy results were obtained in relation to the morphological PN pattern and further stratified by mode of PN observation, maternal age, and embryo quality parameters.

Results

Abnormal ploidy results in 2PN-derived embryos were 1% (n = 20/1982): 0.8% showed triploidy and 0.2% haploidy. Ploidy results in relation to PN number in atypical fertilization were as follows: 0PN (n = 150/380) associated with 87.3% of diploidy, 8.7% of haploidy, and 4.0% of triploidy; 1PN-derived blastocysts (n = 73/153) were haploid in 47.7% of cases, 6.5% were triploid, and 45.7% diploid; 2.1PN (n = 23/280) and 3PN patterns (n = 54/280) predicted a triploid result in 34.8% and 74.1% of cases, respectively. PN observation with time-lapse increased ploidy status predictivity from 28.3% to 80.4% (p < 0.01) and reduced expected diploid rates to 19.6% (p < 0.01). Diploidy rate was higher for maternal age ≤ 35 years and for morphologically high-grade embryos.

Conclusion

Morphological PN check can be improved by incorporating ploidy analysis within the conventional PGT workflow. Euploid 2PN-derived embryos can be further selected removing haploids and triploids, and some atypical PN pattern can be better classified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Data Availability

The data underlying this article are available in the article and its online supplementary material.

References

  1. De Los Santos MJ, Apter S, Coticchio G, Debrock S, Lundin K, Plancha CE, et al. Revised guidelines for good practice in IVF laboratories (2015). Hum Reprod. 2016;31:685–6.

    Article  Google Scholar 

  2. Kemper JM, Liu Y, Afnan M, Mol BWJ, Morbeck DE. What happens to abnormally fertilized embryos? A scoping review Reprod Biomed Online. 2023;46:802–7. https://doi.org/10.1016/j.rbmo.2023.02.005.

    Article  PubMed  Google Scholar 

  3. Chen X, Shi S, Mao J, Zou L, Yu K. Developmental potential of abnormally fertilized oocytes and the associated clinical outcomes. Front Physiol. 2020;11:1–7.

    Article  Google Scholar 

  4. Araki E, Itoi F, Honnma H, Asano Y, Oguri H, Nishikawa K. Correlation between the pronucleus size and the potential for human single pronucleus zygotes to develop into blastocysts: 1pn zygotes with large pronuclei can expect an embryo development to the blastocyst stage that is similar to the development of 2pn. J Assist Reprod Genet. 2018;35:817–23.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bredbacka P, Capalbo A. Healthy live birth following embryo transfer of a blastocyst of tetrapronuclear (4PN) origin : a case report. Hum Reprod. 2023;38(9):1700–4. https://doi.org/10.1093/humrep/dead151.

    Article  PubMed  Google Scholar 

  6. Yao G, Xu J, Xin Z, Niu W, Shi S, Jin H, et al. Developmental potential of clinically discarded human embryos and associated chromosomal analysis. Sci Rep. 2016;6:1–9.

    Google Scholar 

  7. Destouni A, Dimitriadou E, Masset H, Debrock S, Melotte C, Van Den Bogaert K, et al. Genome-wide haplotyping embryos developing from 0PN and 1PN zygotes increases transferrable embryos in PGT-M. Hum Reprod. 2018;33:2302–11.

    PubMed  PubMed Central  CAS  Google Scholar 

  8. Capalbo A, Treff N, Cimadomo D, Tao X, Ferrero S, Vaiarelli A, et al. Abnormally fertilized oocytes can result in healthy live births: improved genetic technologies for preimplantation genetic testing can be used to rescue viable embryos in in vitro fertilization cycles. Fertil Steril. 2017;108:1007-1015.e3. https://doi.org/10.1016/j.fertnstert.2017.08.004.

    Article  PubMed  Google Scholar 

  9. Feenan K, Herbert M. Can, “abnormally” fertilized zygotes give rise to viable embryos? Hum Fertil. 2006;9:157–69.

    Article  Google Scholar 

  10. Marin D, Zimmerman R, Tao X, Zhan Y, Scott RT, Treff NR. Validation of a targeted next generation sequencing-based comprehensive chromosome screening platform for detection of triploidy in human blastocysts. Reprod Biomed Online. 2018;36:388–95. https://doi.org/10.1016/j.rbmo.2017.12.015.

    Article  PubMed  CAS  Google Scholar 

  11. Kratka C, Vadapalli PS, Mendola R, Garrisi J, Xu J, Treff NR, et al. Accurate detection and frequency of abnormal ploidy in the human blastocyst. F S Sci. 2023;4:27–35. https://doi.org/10.1016/j.xfss.2023.02.003.

    Article  PubMed  Google Scholar 

  12. Joergensen MW, Labouriau R, Hindkjaer J, Stougaard M, Kolevraa S, Bolund L, et al. The parental origin correlates with the karyotype of human embryos developing from tripronuclear zygotes. Clin Exp Reprod Med. 2015;42:14–21.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Picchetta L, Figliuzzi M, Poli M, Zhan Y, Caroselli S, Tao X, et al. O-302 Triploid conceptions are predominantly caused by female meiosis II errors and their risk increases with advancing maternal age. Hum Reprod. 2023;38(Issue Supplement_1). https://doi.org/10.1093/humrep/dead093.366.

  14. Mateo S, Parriego M, Boada M, Vidal F, Coroleu B, Veiga A. In vitro development and chromosome constitution of embryos derived from monopronucleated zygotes after intracytoplasmic sperm injection. Fertil Steril. 2013;99(3):897.

    Article  PubMed  Google Scholar 

  15. Grau N, Escrich L, Galiana Y, Meseguer M, García-Herrero S, Remohí J, et al. Morphokinetics as a predictor of self-correction to diploidy in tripronucleated intracytoplasmic sperm injection-derived human embryos. Fertil Steril. 2015;104:728–35.

    Article  PubMed  Google Scholar 

  16. Levy B, Sigurjonsson S, Pettersen B, Maisenbacher MK, Hall MP, Demko Z, et al. Genomic imbalance in products of conception: single-nucleotide polymorphism chromosomal microarray analysis. Obstet Gynecol. 2014;124:202–9.

    Article  PubMed  CAS  Google Scholar 

  17. Li M, Xue X, Zhang S, Li W, Zhao X, Ren W, et al. Effects of triploidy incidence on clinical outcomes for IVF-ET cycles in different ovarian stimulation protocols. Gynecol Endocrinol. 2015;31:769–73.

    Article  PubMed  Google Scholar 

  18. Caroselli S, Figliuzzi M, Picchetta L, Cogo F, Zambon P, Pergher I, et al. Improved clinical utility of preimplantation genetic testing through the integration of ploidy and common pathogenic microdeletions analyses. Hum Reprod. 2023;38:762–75.

    Article  PubMed  CAS  Google Scholar 

  19. García-Pascual CM, Navarro-Sánchez L, Navarro R, Martínez L, Jiménez J, Rodrigo L, et al. Optimized ngs approach for detection of aneu-ploidies and mosaicism in pgt-a and imbalances in pgt-sr. Genes (Basel). 2020;11:1–10.

    Article  Google Scholar 

  20. Wickham H, Averick M, Bryan J, Chang W, McGowan L, François R, et al. Welcome to the tidyverse. J Open Source Softw. 2019;4:1686.

    Article  Google Scholar 

  21. Signorell A. DescTools: Tools for Descriptive Statistics. R package version 0.99.57. 2024. https://github.com/AndriSignorell/DescTools/, https://andrisignorell.github.io/DescTools/. Accessed 20 Mar 2024.

  22. Frnk E. Harrell J. Regression modeling strategies with applications to linear models, logistic and ordinal regression, and survival analysis. Springer Ser Stat. 2016. https://doi.org/10.1007/978-3-319-19425-7

  23. Rosenbusch BE. Mechanisms giving rise to triploid zygotes during assisted reproduction. Fertil Steril. 2008;90:49–55.

    Article  PubMed  Google Scholar 

  24. Brancati F, Mingarelli R, Dallapiccola B. Recurrent triploidy of maternal origin. Eur J Hum Genet. 2003;11:972–4.

    Article  PubMed  Google Scholar 

  25. Massalska D, Bijok J, Kucińska-Chahwan A, Zimowski JG, Ozdarska K, Panek G, et al. Triploid pregnancy–clinical implications. Clin Genet. 2021;100:368–75.

    Article  PubMed  CAS  Google Scholar 

  26. Jacobs BYPA, Angell RR, Buchanan IM, Hassold TJ, Matsuyama AM, Manuel B, et al. The origin of human triploids. Ann Hum Genet. 1978;42:49–57.

    Article  PubMed  CAS  Google Scholar 

  27. Staessen C, Van SAC. The chromosomal constitution of embryos developing from abnormally fertilized oocytes after intracytoplasmic sperm injection and conventional in-vitro fertilization. Hum Reprod. 1997;12:321–7.

    Article  PubMed  CAS  Google Scholar 

  28. Popescu F, Jaslow CR, Kutteh WH. Recurrent pregnancy loss evaluation combined with 24-chromosome microarray of miscarriage tissue provides a probable or definite cause of pregnancy loss in over 90% of patients. Hum Reprod. 2018;33:579–87.

    Article  PubMed  CAS  Google Scholar 

  29. Soler A, Morales C, Mademont-Soler I, Margarit E, Borrell A, Borobio V, et al. Overview of chromosome abnormalities in first trimester miscarriages: a series of 1,011 consecutive chorionic villi sample karyotypes. Cytogenet Genome Res. 2017;152:81–9.

    Article  PubMed  CAS  Google Scholar 

  30. Tong X, Jin J, Xue Y, Fang L, Zhu H, Jiang L, et al. Clinical outcomes of frozen–thawed blastocysts from zygotes with no or one pronucleus for in vitro fertilization and intracytoplasmic sperm injection cycles. Arch Gynecol Obstet. 2023;308:1015–22. https://doi.org/10.1007/s00404-023-07118-1.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Zhu J, Wang C, Cao Z, Luan K, Wu Y, Yin H. Developmental competence and neonatal outcomes of nonpronuclear zygotes following single vitrified-warmed blastocyst transfers using propensity score matching analysis. Arch Gynecol Obstet. 2024;309:295–304. https://doi.org/10.1007/s00404-023-07235-x.

    Article  PubMed  CAS  Google Scholar 

  32. Apter S, Ebner T, Freour T, Guns Y, Kovacic B, Le Clef N, et al. Good practice recommendations for the use of time-lapse technology. Hum Reprod Open. 2021;2020:1–26.

    Google Scholar 

  33. Kobayashi T, Ishikawa H, Ishii K, Sato A, Nakamura N, Saito Y, et al. Time-lapse monitoring of fertilized human oocytes focused on the incidence of 0PN embryos in conventional in vitro fertilization cycles. Sci Rep. 2021;11:1–7. https://doi.org/10.1038/s41598-021-98312-1.

    Article  CAS  Google Scholar 

  34. Basile N, Nogales MDC, Bronet F, Florensa M, Riqueiros M, Rodrigo L, et al. Increasing the probability of selecting chromosomally normal embryos by time-lapse morphokinetics analysis. Fertil Steril. 2014;101(3):699-704.e1.

    Article  PubMed  Google Scholar 

  35. Bradley CK, Traversa MV, Hobson N, Gee AJ, McArthur SJ. Clinical use of monopronucleated zygotes following blastocyst culture and preimplantation genetic screening, including verification of biparental chromosome inheritance. Reprod Biomed Online. 2017;34:567–74. https://doi.org/10.1016/j.rbmo.2017.03.013.

    Article  PubMed  Google Scholar 

  36. Mateo S, Vidal F, Parriego M, Rodríguez I, Montalvo V, Veiga A, et al. Could monopronucleated ICSI zygotes be considered for transfer? Analysis through time-lapse monitoring and PGS. J Assist Reprod Genet. 2017;34:905–11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Nagy ZP, Janssenswillen C, Janssens R, De Vos A, Staessen C, Van de Velde H, et al. Timing of oocyte activation, pronucleus formation and cleavage in humans after intracytoplasmic sperm injection (ICSI) with testicular spermatozoa and after ICSI or in-vitro fertilization on sibling oocytes with ejaculated spermatozoa. Hum Reprod. 1998;13:1606–12.

    Article  PubMed  CAS  Google Scholar 

  38. Staessen C, Janssenswillen C, Devroey P, Steirteghem ACV. Cytogenetic and morphological observations of single pronucleated human oocytes after in-vitro fertilization. Hum Reprod. 1993;8:221–3. Available from: https://pubmed.ncbi.nlm.nih.gov/8473423/. [cited 2023 Dec 21].

  39. Van Der Heijden GW, Van Den Berg IM, Baart EB, Derijck AAHA, Martini E, De Boer P. Parental origin of chromatin in human monopronuclear zygotes revealed by asymmetric histone methylation patterns, differs between IVF and ICSI. Mol Reprod Dev [Internet]. 2009;76:101–8. Available from: https://pubmed.ncbi.nlm.nih.gov/18481364/. [cited 2023 Dec 21].

  40. Azevedo AR, Pinho MJ, Silva J, Sá R, Thorsteinsdóttir S, Barros A, et al. Molecular cytogenetics of human single pronucleated zygotes. Reprod Sci [Internet]. 2014;21:1472–82. Available from: https://pubmed.ncbi.nlm.nih.gov/24717739/. [cited 2023 Dec 21].

  41. Cimadomo D, Capalbo A, Scarica C, Sosa Fernandez L, Rienzi L, Ciriminna R, et al. When embryology meets genetics: the definition of developmentally incompetent preimplantation embryos (DIPE)—the consensus of two Italian scientific societies. J Assist Reprod Genet. 2021;38:319–31.

    Article  PubMed  Google Scholar 

  42. Xu J, Zhang M, Niu W, Yao G, Sun B, Bao X, et al. Genome-wide uniparental disomy screen in human discarded morphologically abnormal embryos. Sci Rep. 2015;5:1–10.

    Google Scholar 

  43. Grau N, Escrich L, Martín J, Rubio C, Pellicer A, Escribá MJ. Self-correction in tripronucleated human embryos. Fertil Steril. 2011;96:951–6. Available from: https://pubmed.ncbi.nlm.nih.gov/21851936/. [cited 2023 Dec 21].

  44. Yalçınkaya E, Özay A, Ergin EG, Öztel Z, Özörnek H. Live birth after transfer of a tripronuclear embryo: an intracytoplasmic sperm injection as a combination of microarray and time-lapse technology. Turkish J Obstet Gynecol. 2016;13:95–8.

    Article  Google Scholar 

  45. Canon C, Thurman A, Li A, Hernandez-Nieto C, Lee JA, Roth RM, et al. Assessing the clinical viability of micro 3 pronuclei zygotes. J Assist Reprod Genet. 2023. https://doi.org/10.1007/s10815-023-02830-y

  46. Hattori H, Okuyama N, Ashikawa K, Sakuraba Y, Igarashi H, Kyono K. The utility of human two plus one small pronucleated zygotes (2.1PN) based on clinical outcomes and the focused ploidy analysis. J Assist Reprod Genet. 2024. https://doi.org/10.1007/s10815-024-03114-9

  47. Wang J, Xiong S, Hao X, Gao Y, Xia F, Liao H, et al. Evaluating the developmental potential of 2.1PN-derived embryos and associated chromosomal analysis. J Assist Reprod Genet. 2024. https://doi.org/10.1007/s10815-024-03113-w

  48. McFadden DE, Langlois S. Parental and meiotic origin of triploidy in the embryonic and fetal periods. Clin Genet. 2000;58:192–200.

    Article  PubMed  CAS  Google Scholar 

  49. Ezoe K, Takahashi T, Shimazaki K, Miki T, Tanimura Y, Amagai A, et al. Human 1PN and 3PN zygotes recapitulate all morphokinetic events of normal fertilization but reveal novel developmental errors. Hum Reprod. 2022;37:2307–19.

    Article  PubMed  Google Scholar 

  50. Capalbo A, Rienzi L, Cimadomo D, Maggiulli R, Elliott T, Wright G, et al. Correlation between standard blastocyst morphology, euploidy and implantation: an observational study in two centers involving 956 screened blastocysts. Hum Reprod. 2014;29:1173–81.

    Article  PubMed  Google Scholar 

  51. Fragouli E, Alfarawati S, Spath K, Wells D. Morphological and cytogenetic assessment of cleavage and blastocyst stage embryos. Mol Hum Reprod. 2014;20:117–26.

    Article  PubMed  CAS  Google Scholar 

  52. McCoy RC, Summers MC, McCollin A, Ottolini CS, Ahuja K, Handyside AH. Meiotic and mitotic aneuploidies drive arrest of in vitro fertilized human preimplantation embryos. Genome Med. 2023;15:77. https://doi.org/10.1186/s13073-023-01231-1.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Destouni A, Esteki MZ, Catteeuw M, Tšuiko O, Dimitriadou E, Smits K, et al. Zygotes segregate entire parental genomes in distinct blastomere lineages causing cleavage-stage chimerism and mixoploidy. Genome Res. 2016;26:567–78.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Carson JC, Hoffner L, Conlin L, Parks WT, Fisher RA, Spinner N, et al. Diploid/triploid mixoploidy: a consequence of asymmetric zygotic segregation of parental genomes. Am J Med Genet Part A. 2018;176:2720–32.

    Article  PubMed  Google Scholar 

  55. De Coster T, Masset H, Tšuiko O, Catteeuw M, Zhao Y, Dierckxsens N, et al. Parental genomes segregate into distinct blastomeres during multipolar zygotic divisions leading to mixoploid and chimeric blastocysts. Genome Biol. 2022;23:1–29. https://doi.org/10.1186/s13059-022-02763-2.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Igenomix staff from the R&D, laboratory and diagnosis departments of Italy, Japan, USA, Brazil, and Spain.

Funding

This work was supported by Igenomix.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Girardi.

Ethics declarations

Conflict of interest

All authors are employees of Igenomix, a company providing reproductive genetic services, part of Vitrolife Group.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Girardi, L., Patassini, C., Miravet Valenciano, J. et al. Incidence of haploidy and triploidy in trophectoderm biopsies of blastocysts derived from normally and abnormally fertilized oocytes. J Assist Reprod Genet 41, 3357–3370 (2024). https://doi.org/10.1007/s10815-024-03278-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-024-03278-4

Keywords

Profiles

  1. David Blesa