Skip to main content
Log in

Association of Atrazine-Induced Overexpression of Aldo–Keto-Reductase 1C2 (AKR1C2) with Hypoandrogenism and Infertility: An Experimental Study in Male Wistar Rat

  • Reproductive Biology: Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Atrazine (ATZ, C8H14ClN5) is a widely used synthetic herbicide that contaminates drinking water. It is a known endocrine disruptor that disrupts various molecular pathways involved in hormone signaling, and DNA damage, and can cause reproductive disorders, including decreased fertility, and abnormal development of reproductive organs, as revealed in animal model studies. However, the effect of ATZ on steroidogenesis in the male reproductive system, especially reduction of ketosteroids to hydroxysteroids, remains unclear. This study investigated the toxicity of ATZ on the male reproductive system in the Wistar rat model, with an emphasis on its adverse effect on aldo-ketoreductase family 1 member C2 (AKR1C2). Male Wistar rats were administered ATZ for 56 days (duration of one spermatogenic cycle) through oral route, at 20, 40 and 60 mg/kg body weight (bw) doses. The results indicate that ATZ exposure affects the body weight, impairs sperm production, and decrease FSH, LH, and testosterone levels. Additionally, the down-regulation of key steroidogenic enzymes by ATZ disrupted the synthesis of testosterone, leading to decreased levels of this essential male hormone. On the other hand, the expression of AKR1C2 (mRNA and protein) in the testis was upregulated. The findings suggest that AKR1C2 plays a role in androgen metabolism. Furthermore, its overexpression may lead to alteration in the expression of genes in the connected pathway, causing an increase in the breakdown or inactivation of androgens, which would result in lower androgen levels and, thereby, lead to hypoandrogenism, as the combined effects of down-regulation of steroidogenic genes and up-regulation of AKR1C2. These findings reveal direct implication of disrupted AKR1C2 in male reproductive health and highlight the need for further research on the impact of environmental toxins on human fertility, ultimately providing for better patient care.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Ahmad S, Chandrasekaran M, Ahmad HW. Investigation of the persistence, toxicological effects, and ecological issues of S-Triazine herbicides and their biodegradation using emerging technologies: A review. Microorganisms. 2023;11(10):2558. https://doi.org/10.3390/microorganisms11102558.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Handford CE, Elliott CT, Campbell K. A review of the global pesticide legislation and the scale of challenge in reaching the global harmonization of food safety standards. Integr Environ Assess Manag. 2015;11(4):525–36. https://doi.org/10.1002/ieam.1635.

    Article  PubMed  Google Scholar 

  3. Ackerman F. The economics of atrazine. Int J Occup Environ Health. 2007;13(4):437–45. https://doi.org/10.1179/oeh.2007.13.4.437.

    Article  PubMed  Google Scholar 

  4. Barr DB, Panuwet P, Nguyen JV, Udunk S, Needham LL. Assessing exposure to atrazine and its metabolites using biomonitoring. Environ Health Perspect. 2007;115(10):1474–8. https://doi.org/10.1289/ehp.10141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Solomon GM, Schettler T. Environment and health: 6. Endocrine disruption and potential human health implications. CMAJ 2000;163(11):1471–1476. https://www.cmaj.ca/content/163/11/1471.long

  6. Timchalk C, Dryzga MD, Langvardt PW, Kastl PE, Osborne DW. Determination of the effect of tridiphane on the pharmacokinetics of [14C]-atrazine following oral administration to male Fischer 344 rats. Toxicology. 1990;61(1):27–40. https://doi.org/10.1016/0300-483X(90)90004-Z.

    Article  CAS  PubMed  Google Scholar 

  7. Cooper RL, Laws SC, Das PC, Narotsky MG, Goldman JM, Tyrey EL, Stoker TE. Atrazine and reproductive function: mode and mechanism of action studies. Birth Defects Res, B Dev Reprod Toxicol. 2007;80(2):98–112. https://doi.org/10.1002/bdrb.20110.

    Article  CAS  PubMed  Google Scholar 

  8. Kucka M, Pogrmic-Majkic K, Fa S, Stojilkovic SS, Kovacevic R. Atrazine acts as an endocrine disrupter by inhibiting cAMP-specific phosphodiesterase-4. Toxicol Appl Pharmacol. 2012;265(1):19–26. https://doi.org/10.1016/j.taap.2012.09.019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wirbisky SE, Freeman JL. Atrazine exposure and reproductive dysfunction through the hypothalamus-pituitary-gonadal (HPG) axis. Toxics. 2015;3(4):414–50. https://doi.org/10.3390/toxics3040414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Trentacoste SV, Friedmann AS, Youker RT, Breckenridge CB, Zirkin BR. Atrazine effects on testosterone levels and androgen-dependent reproductive organs in peripubertal male rats. J Androl. 2001;22(1):142–8. 

    Article  CAS  PubMed  Google Scholar 

  11. Wang Y, Chen F, Ye L, Zirkin B, Chen H. Steroidogenesis in Leydig cells: effects of aging and environmental factors. Reproduction. 2017;154(4):R111–22. 

    Article  PubMed  PubMed Central  Google Scholar 

  12. Fukami M, Homma K, Hasegawa T, Ogata T. Backdoor pathway for dihydrotestosterone biosynthesis: implications for normal and abnormal human sex development. Dev Dyn. 2013;242(4):320–9. https://doi.org/10.1002/dvdy.23892.

    Article  CAS  PubMed  Google Scholar 

  13. Miller WL, Auchus RJ. The molecular biology, biochemistry, and physiology of human steroidogenesis and its disorders. Endocr Rev. 2011;32(1):81–151. https://doi.org/10.1210/er.2010-0013.

    Article  PubMed  Google Scholar 

  14. Lee HG, Kim CJ. Classic and backdoor pathways of androgen biosynthesis in human sexual development. Ann Pediatr Endocrinol Metab. 2022;27(2):83. https://doi.org/10.6065/apem.2244124.062.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Mares L, Vilchis F, Chávez B, Ramos L. Molecular genetic analysis of AKR1C2-4 and HSD17B6 genes in subjects 46 XY with hypospadias. J Pediatr Urol. 2020;16(5):689-e1. https://doi.org/10.1016/j.jpurol.2020.07.001.

    Article  Google Scholar 

  16. Franko A, Berti L, Hennenlotter J, Rausch S, Scharpf MO, de Angelis MH, et al. Transcript levels of aldo-ketoreductase family 1 subfamily C (AKR1C) are increased in prostate tissue of patients with type 2 diabetes. J Pers Med. 2020;10(3):124. https://doi.org/10.3390/jpm10030124.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Jin YX, Zhou XF, ChenYY Jin WX, Wang YH, Ye DR, Chen ED, et al. Up-regulated AKR1C2 is correlated with favorable prognosis in thyroid carcinoma. J Cancer. 2019;10(15):3543. https://doi.org/10.7150/jca.28364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Durrer A, Gumiere T, Zagatto MRG, Feiler HP, Silva AMM, Longaresi RH, Cardoso E, et al. Organic farming practices change the soil bacteria community, improving soil quality and maize crop yields. Peer J. 2021;9: e11985. https://doi.org/10.7717/peerj.11985.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Pandey N, Maske P, Mote C, Dighe V. Exposure to Atrazine through gestation and lactation period led to impaired sexual maturation and subfertility in F1 male rats with congenital deformities in F2 progeny. Food Chem Toxicol. 2021;157: 112586. https://doi.org/10.1016/j.fct.2021.112586.

    Article  CAS  PubMed  Google Scholar 

  20. Bashamboo A, Ferraz-de-Souza B, Lourenço D, Lin L, Sebire NJ, Montjean D, Bignon-Topalovic J, et al. Human male infertility associated with mutations in NR5A1 encoding steroidogenic factor 1. Am J Hum Genet. 2010;87(4):505–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bhatti JS, Sidhu IPS, Bhatti GK. Ameliorative action of melatonin on oxidative damage induced by atrazine toxicity in rat erythrocytes. Mol Cell Biochem. 2011;353:139–49. https://doi.org/10.1007/s11010-011-0780-y.

    Article  CAS  PubMed  Google Scholar 

  22. Fucic A, Gamulin M, Ferencic Z, Katic J, Krayer von Krauss M, Bartonova A, Merlo DF, et al. Environmental exposure to xenoestrogens and oestrogen related cancers: reproductive system, breast, lung, kidney, pancreas, and brain. J Environ Health. 2012;11(1):1–9. https://doi.org/10.1186/1476-069X-11-S1-S8.

    Article  Google Scholar 

  23. Revathi P, Vani B, Sarathchandiran I, Kadalmani B, Shyam KP, Palanivel K. Reproductive toxicity of Capparis aphylla (Roth.) in male albino rats. Int J Pharm Biomed Sci. 2010;1(3):102–12.

    Google Scholar 

  24. Ramya V, Madhu-Bala V, Prakash-Shyam K, Gowdhami B, Sathiya-Priya K, Vignesh K, et al. Cytotoxic activity of Indigofera aspalathoides (Vahl.) extracts in cervical cancer (HeLa) cells: Ascorbic acid adjuvant treatment enhances the activity. Phytomed Plus. 2021;1(4):100142. https://doi.org/10.1016/j.phyplu.2021.100142.

    Article  Google Scholar 

  25. Pogrmic K, Fa S, Dakic V, Kaisarevic S, Kovacevic R. Atrazine oral exposure of peripubertal male rats downregulates steroidogenesis gene expression in Leydig cells. Toxicol Sci. 2009;111(1):189–97. https://doi.org/10.1093/toxsci/kfp135.

    Article  CAS  PubMed  Google Scholar 

  26. Kanimozhi V, Palanivel K, Kadalmani B, Krikun G, Taylor HS. Apolipoprotein E induction in Syrian hamster testis following tributyltin exposure: a potential mechanism of male infertility. Reprod Sci. 2014;21(8):1006–14. https://doi.org/10.1177/1933719114522519.

    Article  CAS  PubMed  Google Scholar 

  27. Kanimozhi V, Palanivel K, Akbarsha MA, Kadalmani B. Molecular mechanisms of tributyltin-induced alterations in cholesterol homeostasis and steroidogenesis in hamster testis: In vivo and in vitro studies. J Cell Biochem. 2018;119(5):4021–37. https://doi.org/10.1002/jcb.26564.

    Article  CAS  PubMed  Google Scholar 

  28. Balavigneswaran CK, Venkatesan R, Karuppiah PS, Kumar G, Paliwal P, Krishnamurthy S, Misra N, et al. Silica release from silane cross-linked gelatin based hybrid scaffold affects cell proliferation. ACS Appl Bio Mater. 2009;3(1):197–207. https://doi.org/10.1002/jcb.26564.

    Article  CAS  Google Scholar 

  29. Krishnamoorthy SP, Kalimuthu V, Manimegalai SC, Arulanandu AM, Thiyagarajan R, Balamuthu K. Evaluation of the potential role of diethylstilbestrol on the induction of endometriosis in a rat model–An alternative approach. Biochem Biophys Res Commun. 2022;617:18–24. https://doi.org/10.1016/j.bbrc.2022.05.092.

    Article  CAS  PubMed  Google Scholar 

  30. Zhu S, Zhang T, Wang Y, Zhou X, Wang S, Wang Z, et al. Meta-analysis and experimental validation identified atrazine as a toxicant in the male reproductive system. Environ Sci Pollut Res. 2021;28:37482–97. https://doi.org/10.1007/s11356-021-13396-6.

    Article  CAS  Google Scholar 

  31. Jestadi DB, Phaniendra A, Babji U, Shanmuganathan B, Periyasamy L. Effects of atrazine on reproductive health of nondiabetic and diabetic male rats. Int Sch Res Notices. 2014;21(3):181–8. https://doi.org/10.1155/2014/676013.

    Article  Google Scholar 

  32. Mínguez-Alarcón L, Gaskins AJ, Meeker JD, Braun JM, Chavarro JE. Endocrine disrupting chemicals and male reproductive health. Fertil Steril. 2023;120(6):1138–49.

    Article  PubMed  Google Scholar 

  33. Das S, Sakr H, Al-Huseini I, Jetti R, Al-Qasmi S, Sugavasi R, Sirasanagandla SR. Atrazine toxicity: the possible role of natural products for effective treatment. Plants. 2023;12(12):2278. https://doi.org/10.3390/plants12122278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Quignot N, Arnaud M, Robidel F, Lecomte A, Tournier M, Cren-Olivé C, Barouki R, Lemazurier E. Characterization of endocrine-disrupting chemicals based on hormonal balance disruption in male and female adult rats. Reprod Toxicol. 2012;33(3):339–52. https://doi.org/10.1016/j.reprotox.2012.01.004.

    Article  CAS  PubMed  Google Scholar 

  35. Penning TM, Jonnalagadda S, Trippier PC, Rižner TL. Aldo-ketoreductases and cancer drug resistance. Pharmacol Rev. 2021;73(3):1150–71. https://doi.org/10.1124/pharmrev.120.000122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cools M, Köhler B. Disorders of sex development. Brook’s Clinical Pediatric Endocrinology. 2019;31(2):105–31. https://doi.org/10.1002/9781119152712.ch4.

    Article  Google Scholar 

  37. Abarikwu SO, Farombi EO. Quercetin ameliorates atrazine-induced changes in the testicular function of rats. Toxicol Ind Health. 2016;32(7):1278–85. https://doi.org/10.1177/0748233714555389.

    Article  CAS  PubMed  Google Scholar 

  38. Friedmann AS. Atrazine inhibition of testosterone production in rat males following peripubertal exposure. Reprod Toxicol. 2002;16(3):275–9. https://doi.org/10.1016/S0890-6238(02)00019-9.

    Article  CAS  PubMed  Google Scholar 

  39. Harper AP, Finger BJ, Green MP. Chronic atrazine exposure beginning prenatally impacts liver function and sperm concentration with multi-generational consequences in mice. Front Endocrinol. 2020;11: 580124. https://doi.org/10.3389/fendo.2020.580124.

    Article  Google Scholar 

  40. Zirkin BR. Spermatogenesis: its regulation by testosterone and FSH. Semin Cell Develop Biol. 1998;9(4):417–21. https://doi.org/10.1006/scdb.1998.0253.

    Article  CAS  Google Scholar 

  41. Sharma A, Mollier J, Brocklesby RWK, Caves C, Jayasena CN, Minhas S. Endocrine-disrupting chemicals and male reproductive health. Reprod Med Biol. 2020;19(3):243–53. https://doi.org/10.1002/rmb2.12326.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Jana K, Jana S, Samanta PK. Effects of chronic exposure to sodium arsenite on hypothalamo-pituitary-testicular activities in adult rats: possible an estrogenic mode of action. Reprod Biol Endocrinol. 2006;4:1–13. https://doi.org/10.1186/1477-7827-4-9.

    Article  CAS  Google Scholar 

  43. Singh J, Handelsman DJ. The effects of recombinant FSH on testosterone-induced spermatogenesis in gonadotrophin-deficient (HPG) mice. J Androl. 1996;17(4):382–93. https://doi.org/10.1002/j.1939-4640.1996.tb01804.x.

    Article  CAS  PubMed  Google Scholar 

  44. Azzarito C, Boiardi L, Vergoni W, Zini M, Portioli I. Testicular function in hypercholesterolemic male patients during prolonged simvastatin treatment. Horm Metab Res. 1996;28(04):193–8.

    Article  CAS  PubMed  Google Scholar 

  45. Shalaby MA, El Zorba HY, Kamel GM. Effect of α-tocopherol and simvastatin on male fertility in hypercholesterolemic rats. Pharmacol Res Commun. 2004;50(2):137–42. https://doi.org/10.1016/j.phrs.2003.10.013.

    Article  CAS  Google Scholar 

  46. Tremblay JJ. Molecular regulation of steroidogenesis in endocrine Leydig cells. Steroids. 2015;103:3–10. https://doi.org/10.1016/j.steroids.2015.08.001.

    Article  CAS  PubMed  Google Scholar 

  47. Rohayem J, Zitzmann M, Laurentino S, Kliesch S, Nieschlag E, Holterhus PM, Kulle A, et al. The role of gonadotropins in testicular and adrenal androgen biosynthesis pathways—insights from males with congenital hypogonadotropic-hypogonadism on hCG/rFSH and on testosterone replacement. Clin Endocrinol (Oxf). 2021;94(1):90–101. https://doi.org/10.1111/cen.14324.

    Article  CAS  PubMed  Google Scholar 

  48. Christenson LK, Strauss JF 3rd. Steroidogenic acute regulatory protein: an update on its regulation and mechanism of action. Arch Med Res. 2001;32(6):576–86. https://doi.org/10.1016/S0188-4409(01)00338-1.

    Article  CAS  PubMed  Google Scholar 

  49. Yoshimoto FK, Auchus RJ. The diverse chemistry of cytochrome P450 17A1 (P450c17, CYP17A1). J Steroid Biochem Mol Biol. 2015;151:52–65. https://doi.org/10.1016/j.jsbmb.2014.11.026.

    Article  CAS  PubMed  Google Scholar 

  50. Payne AH, Hales DB. Overview of steroidogenic enzymes in the pathway from cholesterol to active steroid hormones. Endocr Rev. 2004;25(6):947–70. https://doi.org/10.1210/er.2003-0030.

    Article  CAS  PubMed  Google Scholar 

  51. Murono EP, Derk RC, de León JH. Differential effects of octylphenol, 17β-estradiol, endosulfan, or bisphenol A on the steroidogenic competence of cultured adult rat Leydig cells. Reprod Toxicol. 2001;15(5):551–60. https://doi.org/10.1016/S0890-6238(01)00158-7.

    Article  CAS  PubMed  Google Scholar 

  52. Hall R, Yuan S, Wood K, Katona M, Straub AC. Cytochrome b5 reductases: Redox regulators of cell homeostasis. J Biol Chem. 2022;298(12): 102654. https://doi.org/10.1016/j.jbc.2022.102654.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Jin Y, Mesaros AC, Blair IA, Penning TM. Stereospecific reduction of 5β-reduced steroids by human ketosteroidreductases of the AKR (aldo-ketoreductase) superfamily: role of AKR1C1–AKR1C4 in the metabolism of testosterone and progesterone via the 5β-reductase pathway. J Biol Chem. 2011;437(1):53–61. https://doi.org/10.1042/BJ20101804.

    Article  CAS  Google Scholar 

  54. Flück CE, Pandey AV. Steroidogenesis of the testis–-new genes and pathways. Ann Endocrinol (Paris). 2014;75(2):40–7. https://doi.org/10.1016/j.ando.2014.03.002.

    Article  PubMed  Google Scholar 

  55. Biason-Lauber A, Miller WL, Pandey AV, Flück CE. Of marsupials and men: “Backdoor” dihydrotestosterone synthesis in male sexual differentiation. Mol Cell Endocrinol. 2013;371(1–2):124–32. https://doi.org/10.1016/j.mce.2013.01.017.

    Article  CAS  PubMed  Google Scholar 

  56. Auchus RJ, Miller WL. Defects in androgen biosynthesis causing 46, XY disorders of sexual development. Semin Reprod Med. 2012;30(5):417–26. https://doi.org/10.1055/s-0032-1324726.

    Article  CAS  PubMed  Google Scholar 

  57. Huang KH, Chiou SH, Chow KC, Lin TY, Chang HW, Chiang IP, Lee MC, et al. Overexpression of aldo-ketoreductase 1C2 is associated with disease progression in patients with prostatic cancer. Histopathology. 2010;57(3):384–94. https://doi.org/10.1111/j.1365-2559.2010.03647.x.

    Article  PubMed  Google Scholar 

Download references

Funding

This study was supported by the National Higher Education Mission (RUSA), 2.0:- Biological Sciences; Tamil Nadu State Council for Higher Education (TANSCHE); and Department of Science and Technology Teachers Associateship for Research Excellence (DST-TARE). National Centre for Alternatives to Animal Experiments (NCAAE), and DST-FIST at Department of Animal Science, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India, provided the infrastructure for the execution of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kadalmani Balamuthu.

Ethics declarations

The experimental protocol was approved by the Institutional Animal Ethics Committee (BDU/IAEC/P28/ 25.08.2022).

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arulanandu, A.M., Kalimuthu, V., Manimegalai, S.C. et al. Association of Atrazine-Induced Overexpression of Aldo–Keto-Reductase 1C2 (AKR1C2) with Hypoandrogenism and Infertility: An Experimental Study in Male Wistar Rat. Reprod. Sci. 31, 3228–3239 (2024). https://doi.org/10.1007/s43032-024-01627-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-024-01627-3

Keywords